Why do people move slower as they get older? Study offers clues

Evan Walker
Evan Walker TheMediTary.Com |
Older female stretches in a gymShare on Pinterest
New research suggests that adults may move slower as they get older to help conserve energy. Shiho Fukada/Getty Images
  • As human beings get older, our movements naturally start to slow down.
  • New research suggests that older adults may move slower partly because it costs them more energy than younger adults.
  • Scientists believe these findings could lead to new diagnostic tools for diseases such as Parkinson’s and multiple sclerosis.

It’s common knowledge that our bodies naturally become slower in their movements as we age.

Some potential explanations could include a slower metabolism, Health">loss of muscle mass, and becoming Health">less active over time.

Now, researchers from the University of Colorado Boulder say older adults may move slower partially because it costs them more energy to do so than younger adults.

Scientists believe this new research — recently published in the journal The Journal of Neuroscience — may help lead to new diagnostic tools for diseases such as Parkinson’s disease and multiple sclerosis.

Researchers believe their findings may help lead to new diagnostic tools for Health">movement-related disorders.

“Movement slowing as we age can significantly impact our quality of life,” Ahmed explained.

“It can restrict not only physical but social activities. It’s important to understand the underlying causes and determine if there are potential interventions that can help slow or eliminate the decline.”

“Additionally, slowing of movement not only occurs with age but is a symptom of a number of neurological disorders,” she continued.

“Why is this? Why do disorders, such as depression, which are associated with reward circuitry in the brain, also lead to a general slowing of movement? For me, this suggests that movement speed is telling us about a lot more than just movement-related brain circuits and muscles.”

“A better understanding of why movement is slowing in these various disorders can provide more information about the underlying causes, which can help identify better interventions. An advantage of using movement as a biomarker is that it is an easily accessible and noninvasive measure. So tracking someone’s movements either in the lab or throughout their daily activities may at some point provide a valuable biomarker of neurological health.”

—Alaa A. Ahmed, PhD, senior study author

After reviewing this study, Clifford Segil, DO, a neurologist at Providence Saint John’s Health Center in Santa Monica, CA, told MNT that he agrees with this study’s encouragement of exercise as we age, even if it takes more energy to produce the same activity done as a young person.

“My dictum treating my elderly patients as a neurologist is ‘If you don’t use it you will lose it!’” Segil continued. “I agree encouraging elderly patients to move has multiple Health benefits in agreement with this paper’s authors.”

“I would like to see a concomitant EEG (electroencephalogram) running on these study participants to determine if their brain activity does slow down or increase during these activities to support the author’s claims,” he added.

“I think more research on how an elderly brain adapts to the challenges of aging and moving would be fascinating to read and helpful to my aging patients.”

MNT also spoke with Ryan Glatt, CPT, NBC-HWC, senior brain Health coach and director of the FitBrain Program at Pacific Neuroscience Institute in Santa Monica, CA, about this study.

“(This) study on why older adults move slower offers an intriguing hypothesis linking slower movements to energy conservation and reward processing,” Glatt said.

“However, the conceptual leap from observed behavior to underlying neural mechanisms requires cautious interpretation. Without direct neurological evidence correlating movement patterns with brain function changes due to aging, the conclusions remain speculative.”

“To strengthen the findings, future research should aim to directly link the behavioral data with neurophysiological evidence. Employing a broader methodological approach, including longitudinal studies and diverse population samples, could help delineate how universally these proposed mechanisms apply across different aging trajectories. Additionally, replicating the study with a larger sample size and varying conditions would be crucial to verify the robustness and generalizability of the initial result.”

— Ryan Glatt, brain health coach

TAGGED: , , ,
Share this Article