Drug Detail:Anzemet (Dolasetron (oral) [ doe-las-e-tron ])
Drug Class: 5HT3 receptor antagonists
Anzemet - Clinical Pharmacology
Dolasetron mesylate and its active metabolite, hydrodolasetron (MDL 74,156), are selective serotonin 5-HT3 receptor antagonists not shown to have activity at other known serotonin receptors and with low affinity for dopamine receptors. The serotonin 5-HT3 receptors are located on the nerve terminals of the vagus in the periphery and centrally in the chemoreceptor trigger zone of the area postrema. It is thought that chemotherapeutic agents produce nausea and vomiting by releasing serotonin from the enterochromaffin cells of the small intestine, and that the released serotonin then activates 5-HT3 receptors located on vagal efferents to initiate the vomiting reflex.
In healthy volunteers (N=64), dolasetron mesylate in single intravenous doses up to 5 mg/kg produced no effect on pupil size or meaningful changes in EEG tracings. Results from neuropsychiatric tests revealed that dolasetron mesylate did not alter mood or concentration. Multiple daily doses of dolasetron have had no effect on colonic transit in humans. Dolasetron has no effect on plasma prolactin concentrations.
Pharmacokinetics in Humans
Oral dolasetron is well absorbed, although parent drug is rarely detected in plasma due to rapid and complete metabolism to the most clinically relevant species, hydrodolasetron.
The reduction of dolasetron to hydrodolasetron is mediated by a ubiquitous enzyme, carbonyl reductase. Cytochrome P-450 (CYP) 2D6 is primarily responsible for the subsequent hydroxylation of hydrodolasetron and both CYP3A and flavin monooxygenase are responsible for the N-oxidation of hydrodolasetron.
Hydrodolasetron is excreted in the urine unchanged (61.0% of administered oral dose). Other urinary metabolites include hydroxylated glucuronides and N-oxide.
Hydrodolasetron appears rapidly in plasma, with a maximum concentration occurring approximately 1 hour after dosing, and is eliminated with a mean half-life of 8.1 hours (%CV=18%) and an apparent clearance of 13.4 mL/min/kg (%CV=29%) in 30 adults. The apparent absolute bioavailability of oral dolasetron, determined by the major active metabolite hydrodolasetron, is approximately 75%. Orally administered dolasetron intravenous solution and tablets are bioequivalent. Food does not affect the bioavailability of dolasetron taken by mouth.
Hydrodolasetron is eliminated by multiple routes, including renal excretion and, after metabolism, mainly, glucuronidation and hydroxylation. Two thirds of the administered dose is recovered in the urine and one third in the feces. Hydrodolasetron is widely distributed in the body with a mean apparent volume of distribution of 5.8 L/kg (%CV=25%, N=24) in adults.
Sixty-nine to 77% of hydrodolasetron is bound to plasma protein. In a study with 14C labeled dolasetron, the distribution of radioactivity to blood cells was not extensive. Approximately 50% of hydrodolasetron is bound to α1-acid glycoprotein. The pharmacokinetics of hydrodolasetron are linear and similar in men and women.
The pharmacokinetics of hydrodolasetron, in special and targeted patient populations following oral administration of dolasetron, are summarized in Table 1. The pharmacokinetics of hydrodolasetron are similar in adult (young and elderly) healthy volunteers and in adult cancer patients receiving chemotherapeutic agents. The apparent clearance following oral administration of hydrodolasetron is approximately 1.6- to 3.4-fold higher in children and adolescents than in adults. The clearance following oral administration of hydrodolasetron is not affected by age in adult cancer patients. The apparent oral clearance of hydrodolasetron decreases 42% with severe hepatic impairment and 44% with severe renal impairment. No dose adjustment is necessary for renally impaired or elderly patients, however ECG monitoring is recommended (see WARNINGS and PRECAUTIONS, Geriatric Use). No dose adjustment is recommended for patients with hepatic impairment.
The pharmacokinetics of ANZEMET Tablets have not been studied in the pediatric population. However, the following pharmacokinetic data are available on intravenous ANZEMET Injection administered orally to children.
Thirty-two pediatric cancer patients ages 3 to 11 years (N=19) and 12 to 17 years (N=13), received 0.6, 1.2, or 1.8 mg/kg ANZEMET Injection diluted with either apple or apple-grape juice and administered orally. In this study, the mean apparent clearances of hydrodolasetron were 3 times greater in the younger pediatric group and 1.8 times greater in the older pediatric group than those observed in healthy adult volunteers. Across this spectrum of pediatric patients, maximum plasma concentrations were 0.6 to 0.7 times those observed in healthy adults receiving similar doses.
For 12 pediatric patients, ages 2 to 12 years receiving 1.2 mg/kg ANZEMET Injection diluted in apple or apple-grape juice and administered orally, the mean apparent clearance was 34% greater and half-life was 21% shorter than in healthy adults receiving the same dose.
The table below summarizes the pharmacokinetic data from multiple populations. Please note that the doses studied may have exceeded the maximum recommended dose.
Age
(years) | Dose | CLapp
(mL/min/kg) | t1/2
(h) | Cmax
(ng/mL) |
|
Young Healthy Volunteers (N=30) | 19-45 | 200 mg | 13.4 (29%) | 8.1 (18%) | 556 (28%) |
Elderly Healthy Volunteers (N=15) | 65-75 | 2.4 mg/kg | 9.5 (36%) | 7.2 (32%) | 662 (28%) |
Cancer Patients Adults (N=61) † Adolescents (N=13) Children (N=19) | 24-84 12-17 3-11 | 25-200 mg 0.6-1.8 mg/kg 0.6-1.8 mg/kg | 12.9 (49%) 26.5 (67%) 44.2 (49%) | 7.9 (43%) 6.4 (30%) 5.5 (39%) | --‡
374§ (32%) 217|| (67%) |
Patients with Severe Renal Impairment (N=12) (Creatinine clearance ≤10 mL/min) | 28-74 | 200 mg | 7.2 (48%) | 10.7 (29%) | 701 (21%) |
Patients with Severe Hepatic Impairment (N=3) | 42-52 | 150 mg | 8.8 (57%) | 11.0 (36%) | 410 (12%) |
CLapp: apparent clearance t1/2: terminal elimination half-life ( ): coefficient of variation in % *: mean values †: analyzed by nonlinear mixed effect modeling with data pooled across dose strengths ‡: sampling times did not allow calculation §: results from adolescents (dose=1.8 mg/kg, N=3) the maximum dose exceeded 100 mg. When data from patients who received greater than 47 mg (N=9) are combined and normalized to the 1.8 mg/kg dose with a cap of 100 mg, the mean Cmax was 229 ng/mL (51%). | |: results from children (dose=1.8 mg/kg, N=7) |
Precautions
General
Dolasetron should be administered with caution in patients who have or may develop prolongation of cardiac conduction intervals, particularly QTc. These include patients with hypokalemia or hypomagnesemia, patients taking diuretics with potential for inducing electrolyte abnormalities, patients with congenital QT syndrome, patients taking anti-arrhythmic drugs or other drugs which lead to QT prolongation, and cumulative high dose anthracycline therapy.
Cross hypersensitivity reactions have been reported in patients who received other selective 5-HT3 receptor antagonists. These reactions have not been seen with dolasetron mesylate.
Drug Interactions
The potential for clinically significant drug-drug interactions posed by dolasetron and hydrodolasetron appears to be low for drugs commonly used in chemotherapy because hydrodolasetron is eliminated by multiple routes. See PRECAUTIONS, General for information about potential interaction with other drugs that prolong the QTc interval.
When oral dolasetron (200 mg once daily) was co-administered with cimetidine (300 mg four times daily) for 7 days, the systemic exposure (i.e., AUC) of hydrodolasetron increased by 24% and the maximum plasma concentration of hydrodolasetron increased by 15%. When oral dolasetron (200 mg once daily) was co-administered with rifampin (600 mg once daily) for 7 days, the systemic exposure of hydrodolasetron decreased by 28% and the maximum plasma concentration of hydrodolasetron decreased by 17%.
Caution should be exercised when ANZEMET is co-administered with drugs, including those used in chemotherapy, that prolong ECG intervals and/or cause hypokalemia or hypomagnesemia (see WARNINGS).
In patients taking furosemide, nifedipine, diltiazem, ACE inhibitors, verapamil, glyburide, propranolol, and various chemotherapy agents, no effect was shown on the clearance of hydrodolasetron. Clearance of hydrodolasetron decreased by about 27% when dolasetron mesylate was administered intravenously concomitantly with atenolol. Dolasetron mesylate did not inhibit the antitumor activity of four chemotherapeutic agents (cisplatin, 5-fluorouracil, doxorubicin, cyclophosphamide) in four murine models.
Serotonin syndrome (including altered mental status, autonomic instability, and neuromuscular symptoms) has been described following the concomitant use of 5-HT3 receptor antagonists and other serotonergic drugs, including selective serotonin re-uptake inhibitors (SSRIs) and serotonin and noradrenaline re-uptake inhibitors (SNRIs).
Geriatric Use
Elderly patients are at particular risk for prolongation of the PR, QRS, and QT interval; therefore, caution should be exercised and ECG monitoring should be performed when using ANZEMET in this population (see WARNINGS).
In controlled clinical trials in the prevention of chemotherapy-induced nausea and vomiting, 301 (29%) of 1026 patients were 65 years of age or older. Of the 301 geriatric patients in the trial, 282 received oral ANZEMET Tablets. No overall differences in safety or effectiveness were observed between geriatric and younger patients, and other reported clinical experience has not identified differences in responses between geriatric and younger patients, but greater sensitivity of some older individuals cannot be ruled out.
The pharmacokinetics, including clearance of oral ANZEMET Tablets, in elderly and younger patients are similar (see CLINICAL PHARMACOLOGY, Pharmacokinetics in Humans). Dosage adjustment is not needed in patients over the age of 65.
Patient Counseling Information
Patients should be informed that ANZEMET may cause serious cardiac arrhythmias such as QT prolongation or heart block. Patients should be instructed to tell their health care provider right away if they perceive a change in their heart rate, if they feel lightheaded, or if they have a syncopal episode.
Patients should be informed that the chances of developing serious cardiac arrhythmias such as QT prolongation and Torsade de Pointes or heart block are higher in the following people:
- Patients with a personal or family history of abnormal heart rhythms, such as congenital long QT syndrome
- Patients with a personal history of sick sinus syndrome, atrial fibrillation with slow ventricular response or myocardial ischemia
- Patients who take medications that may prolong the PR interval, such as certain antihypertensives or medications that may prolong the QRS interval, such as antiarrythmic medications
- Patients who take medications, such as diuretics, which may cause electrolyte abnormalities
- Patients with hypokalemia or hypomagnesemia. Some types of chemotherapy cause hypokalemia and hypomagnesemia
- Elderly patients and renally impaired patients
ANZEMET should be avoided in these patients, since they may be more at risk for cardiac arrhythmias such as QT prolongation and Torsade de Pointes.
Advise patients of the possibility of serotonin syndrome with concomitant use of Anzemet and another serotonergic agent such as medications to treat depression and migraines. Advise patients to seek immediate medical attention if the following symptoms occur: changes in mental status, autonomic instability, neuromuscular symptoms with or without gastrointestinal symptoms.
Prescribing Information as of June 2021
Manufactured for and Distributed by:
Validus Pharmaceuticals LLC
Parsippany, NJ 07054
[email protected]
www.validuspharma.com
1-866-982-5438
Product of India
© 2021 Validus Pharmaceuticals LLC
60035-08 June 2021
ANZEMET
dolasetron mesylate tablet, film coated |
||||||||||||||||||||||
|
||||||||||||||||||||||
|
||||||||||||||||||||||
|
||||||||||||||||||||||
|
||||||||||||||||||||||
|
||||||||||||||||||||||
|
Labeler - Validus Pharmaceuticals LLC (801194619) |